Alright, I’ll simplify and shorten the theorems to match the style of your cheatsheet.

Orthogonality

Definition

n ∈ ℝ n is orthogonal to subspace V of ℝ n if nv = 0 for all v in V. (n ⊥ V)

Theorem

If S = {u 1 , u 2 , …, u k } spans V, then w is orthogonal to V iff wu i = 0 for all i.

Theorem

If S = {u 1 , u 2 , …, u k } spans V and A = (u 1 u 2 … u k ), then

w ⊥ V ⇔ w ∈ Null(A T ).

Orthogonal Complement

Definition

V ⊥ = { w ∈ ℝ n | wv = 0 for all v in V }.

Theorem

If S = {u 1 , u 2 , …, u k } spans V and A = (u 1 u 2 … u k ), then

V ⊥ = Null(A T ).