Laws
All sets referred to below are subsets of a universal set U
Commutative
AβͺB=BβͺA
Aβ©B=Bβ©A
Associative
(AβͺB)βͺC=Aβͺ(BβͺC)
(Aβ©B)β©C=Aβ©(Bβ©C)
Distributive
Aβͺ(Bβ©C)=(AβͺB)β©(AβͺC)
Aβ©(BβͺC)=(Aβ©B)βͺ(Bβ©C)
Identity
Aβͺβ
=A
Aβ©U=A
Complement
AβͺAc=U
Aβ©Ac=β
Double Complement
(Ac)c=A
Idempotent
AβͺA=A
Aβ©A=A
Universal Bound
AβͺU=U
Aβ©β
=β
De Morganβs
(AβͺB)c=Acβ©Bc
(Aβ©B)c=AcβͺBc
Absorption
Aβͺ(Aβ©B)=A
Aβ©(AβͺB)=A
Complements of U and β
Uc=β
β
c=U
Set Difference
AβB=Aβ©Bc
Subset Relations
Inclusion of Intersection
Aβ©BβA
Aβ©BβB
Inclusion in Union
AβAβͺB
BβAβͺB
Transitive Property of Subsets
AβBβ§BβCβAβC