Product Rule

Quotient Rule

Chain Rule

Let be differentiable at , and let be a differentiable function of

Continuous Function

A Function is continuous at a point if: Note that has to exist (Laws of Limits)

Implicit Differentiation

  1. Differentiate both sides of the equation W.R.T.
  2. Solve the resulting equation for
Example

Find for Differentiating both sides W.R.T. , Solving for ,

Laws of Limits

These are true provided all the limits involved exist

\lim_{x \to c} (f(x) \pm g(x)) = \lim_{x \to c} f(x) \pm \lim_{x \to c} g(x)$$ $$\lim_{x \to c} kf(x) = k \lim_{x \to c} f(x)$$ $$\lim_{x \to c} (f(x)g(x)) = \left(\lim_{x \to c}f(x)\right)\left(\lim_{x \to c}g(x)\right)$$ $$\lim_{x \to c}\frac{f(x)}{g(x)} = \frac{\lim\limits_{x \to c} f(x)}{\lim\limits_{x \to c} g(x)}$$ Provided that $\lim\limits_{x \to c}g(x) \neq 0$. If this is an issue, [[Replacement Rule]] can be used If $g(x)$ is continuous at $x = b$, and $\lim\limits_{x \to c} f(x) = b$, then $$\lim_{x \to c}g(f(x)) = g\left(\lim_{x \to c} f(x)\right)$$ $\lim_{x \to c} f(x)$ only exists if: $$\lim_{x \to c^-} f(x) = \lim_{x \to c^+} f(x)$$ ### Limits of Polynomial Fractions For limits in the form $$\lim_{x \to \pm \infty} \frac{P(x)}{Q(x)}$$ where $P(x)$ and $Q(x)$ are polynomials in $x$. $$\lim_{x \to \pm \infty} \frac{P(x)}{Q(x)}$$ $$= \lim_{x \to \pm \infty}\frac{Ax^\alpha + ...}{Bx^\beta + ...} = \begin{cases} 0 & \text{if }\alpha < \beta \\ \frac{A}{B} & \text{if }\alpha = \beta\\ \infty \ \text{or} \ -\infty & \text{if }\alpha > \beta \end{cases}$$ If $\alpha > \beta$, the sign of the limit depends on the sign of $A$ and $B$ $$\lim_{x \to \infty} \frac{(18x^2 + 5x - 1)(2\sqrt{x}-1)^3}{(3x-1)^4}$$ $$=\lim_{x \to \infty} \frac{144x^\frac{7}{2} + ...}{81x^4 + ...} = 0$$ ### Replacement Rule Let $I$ be an open interval containing the point $x = c$ If $f(x) = g(x)$ for all $I$, except possible at $x = c$, then $$\lim_{x \to c}f(x) = \lim_{x \to c}g(x)$$ #### Eg 1 $$\lim_{x \to 6} \frac{x^2 -7x+6}{36-x^2} = \lim_{x \to 6} \frac{(x-1)(x-6)}{-(6+x)(x-6)} = \lim_{x \to 6} \frac{(x-1)}{-(6+x)} = -\frac{5}{12}$$ This is because $\frac{x-1}{-(6+x)} = \frac{(x-1)(x-6)}{-(6+x)(x-6)}$ except at $x=6$, so we can use $\frac{x-1}{-(6+x)}$ to evaluate $\lim\limits_{x \to 6}$ #### Eg 2 $$\lim_{x \to -3} \frac{\sqrt{x+12} - \sqrt{6-x}}{9-x^2}$$ $$=\lim_{x \to -3} \frac{\sqrt{x+12} - \sqrt{6-x}}{(3+x)(3-x)}\ \cdot\ \frac{\sqrt{x+12} + \sqrt{6-x}}{\sqrt{x+12} + \sqrt{6-x}}$$ $$=\lim_{x \to -3} \frac{(x+12) - (6-x)}{(3+x)(3-x)\left(\sqrt{x+12} + \sqrt{6-x}\right)}=\lim_{x \to -3} \frac{6+2x}{(3+x)(3-x)\left(\sqrt{x+12} + \sqrt{6-x}\right)}=$$ $$=\lim_{x \to -3} \frac{2}{(3-x)\left(\sqrt{x+12} + \sqrt{6-x}\right)} =\frac{2}{(3+3)\left(\sqrt{12-3} + \sqrt{6+3}\right)} =\frac{1}{18}$$