Let I be an open interval containing the point x=c
If f(x)=g(x) for all I, except possible at x=c, then
limx→cf(x)=limx→cg(x)
Examples
Simple Example
limx→636−x2x2−7x+6=limx→6−(6+x)(x−6)(x−1)(x−6)=limx→6−(6+x)(x−1)=−125
This is because −(6+x)x−1=−(6+x)(x−6)(x−1)(x−6) except at x=6, so we can use −(6+x)x−1 to evaluate x→6lim