Rule

Let be an open interval containing the point If for all , except possible at , then

Examples

Simple Example

This is because except at , so we can use to evaluate

If there are square roots involved

\lim_{x \to -3} \frac{\sqrt{x+12} - \sqrt{6-x}}{9-x^2}&& \end{flalign}$$ $$\begin{flalign} =\lim_{x \to -3} \frac{\sqrt{x+12} - \sqrt{6-x}}{(3+x)(3-x)}\ \cdot\ \frac{\sqrt{x+12} + \sqrt{6-x}}{\sqrt{x+12} + \sqrt{6-x}} && \end{flalign}$$ $$\begin{flalign} =\lim_{x \to -3} \frac{(x+12) - (6-x)}{(3+x)(3-x)\left(\sqrt{x+12} + \sqrt{6-x}\right)}=\lim_{x \to -3} \frac{6+2x}{(3+x)(3-x)\left(\sqrt{x+12} + \sqrt{6-x}\right)}=&& \end{flalign}$$ $$\begin{flalign} =\lim_{x \to -3} \frac{2}{(3-x)\left(\sqrt{x+12} + \sqrt{6-x}\right)} =\frac{2}{(3+3)\left(\sqrt{12-3} + \sqrt{6+3}\right)} =\frac{1}{18}&& \end{flalign}$$